SE	-	 	
-	м		u
			~

III

QP CODE

23MAT32

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEMESTER END EXAMINATIONS NOV -2024 II BSC MATHEMATICS: NUMERICAL METHODS & PROBLEM SOLVING

SESSIONS 1

			·		,	· · · · · · · · · · · · · · · · · · ·					,	
DATE&	18.11.2024	REG	1_						-		MAX	~
SESSION	AN	NO	12	13	2	M	A	7	7	U	MARKS	50
SESSION		140	100		Sec.		, ,	'	-	19	MARKS	101.74

SECTION-A

Answer any three questions. Selecting at least one question from each part

Part - I

 $3 \times 10 = 30$

Obtain the estimate of the missing terms in the following data.

Designation of	X	1	2	3	4	5	6	7	8
	f(x)	1	8	?	64	?	216	343	512

- 2. State and prove Newton's Gregory formula for forward interpolation with equal intervals
- 3. From the following table, find the number of students who obtain less than 56 marks.

Marks	30-40	40-50	50-60	60-70	70-80
No.of students	31	42	51	35	' 31

- 4. Apply Gauss forward formula to find the value of u_9 if $u_0 = 14$, $u_4 = 24$, $u_8 = 32$, $u_{16} = 40$.
- 5. Find a real root of the equation $\cos x = 3x 1$, correct to three decimal places, using iteration method.
- 6. Determine the constants a and b by the least squares method such that $y = ae^{bx}$, fits the following data.

X	1.0	1.2	1.4	1.6
y	40.170	73.196	133.372	. 243.02

SECTION-B

Answer any four questions

 $4 \times 5 M = 20 M$

7. Prove that (i)
$$\mu^2 = 1 + \frac{\delta^2}{4}$$
, (ii) $\Delta = \frac{\delta^2}{2} + \delta \sqrt{1 + \frac{\delta^2}{4}}$

8. Given $y_0 = 3$, $y_1 = 12$, $y_3 = 81$, $y_4 = 100$. Find $\Delta^4 y_0$ without forming difference table. $y_2 = 81$, $y_3 = 300$, $y_4 = 100$

9. Given

х	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

Find f(7.5)

10. By means of Newton's divided difference formula, find the values of f(8), f(15) from the following table.

	x	4	5	7	10	11	13
9	f(x)	48	100	294	900	1210	2028

- 11. Apply Stirling's formula to find y_{28} given that y_{20} =49225, y_{25} = 48316, y_{30} = 47236, y_{35} = 45926, y_{40} = 44300.
- 12. Find the real root of the equation $x^2 5x + 2 = 0$ by Newton-Raphson's method.
- 13. Find the least square line y = a + bx and y(5) for the data.

X	0	2	5	7
y	-1	` 5	12	20